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Experimental data are presented that demonstrate the existence of a family of 
gravitational water waves that propagate practically without change of form on the 
surface of shallow water of uniform depth. The surface patterns of these waves are 
genuinely two-dimensional and fully periodic, i.e. they are periodic in two spatial 
directions and in time. The amplitudes of these waves need not be small ; their form 
persists even up to breaking. The waves are easy to generate experimentally, and 
they are observed to propagate in a stable manner, even when perturbed significantly. 
The measured waves are described with reasonable accuracy by a family of exact 
solutions of the Kadomtsev-Petviashvili equation (KP solutions of genus 2) over the 
entire parameter range of the experiments, including waves well outside the putative 
range of validity of the K P  equation. These genus-2 solutions of the K P  equation 
may be viewed as two-dimensional generalizations of cnoidal waves. 

1. Introduction 
A problem of fundamental interest in fluid mechanics is to provide an accurate 

description of waves on a water surface. After the experiments of Russell (1844), Airy 
(1845) and Stokes (1847) pioneered the theoretical study of water waves induced by 
gravitation using a variety of approximations to obtain practical results. In 
particular, they made their mathematical models tractable by assuming wave 
heights to be small (either linear or weakly nonlinear) and the waves to be one- 
dimensional. (In this paper we refer to waves as one-dimensional or two-dimensional 
according to whether their surface patterns are one- or two-dimensional. Their 
corresponding velocity fields are one dimension higher.) Even though these 
assumptions automatically exclude important aspects of wave motion such as 
breaking and two-dimensionality, much of the theoretical progress during the 140 
years since the seminal work of Airy and Stokes has been linked to these two 
approximations. Expositions of the fundamental processes and reviews of this 
progress can be found in the classic books of Lamb (1932) and Stoker (1957). 

Relatively little theoretical or experimental progress has been made for weakly 
nonlinear waves which are genuinely two-dimensional. Past research has focused 
primarily on short-crested waves that arise when a wavetrain is reflected a t  an 
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oblique angle to its direction of propagation. The resulting wavetrain is spatially 
periodic in two orthogonal directions, one of which coincides with the direction of 
pattern propagation. (Such a wave pattern is also symmetric about the direction of 
propagation, and it can be approximated by the superposition of two identical 
wavetrains propagating a t  oblique angles to one another.) In  deep water Hsu, 
Tsuchiya & Silvester (1979) and Hsu, Silvester & Tsuchiya (1980) presented two- 
dimensional generalizations of Stokes’ expansion for short-crested waves, following 
earlier work by Fuchs (1952) and Chappelear (1959, 1961). Roberts (1983) and 
Roberts & Peregrine (1983) also examined properties of short- and long-crested 
(weakly two-dimensional) waves. Numerical calculations of Fourier coefficients to 
represent short-crested waves in deep water have been presented by Roberts & 
Schwartz (1983) and Bryant (1985). I n  order to  explain the experimental 
observations of Su et al. (1982) and Su (1982), McLean (1982a) analysed the stability 
of one-dimensional waves in deep water to two-dimensional disturbances and 
Meiron, Saffman & Yuen (1982) extended earlier work (Saffman & Yuen 1980) on 
bifurcations of Stokes’ waves. 

I n  shallow water, the oblique interactions of one-dimensional cnoidal and solitary 
waves were studied analytically by Benney & Luke (1964) and Miles (1977a, b ) ,  and 
experimentally by Melville (1980). Benney & Roskes (1969) and McLean (19826) 
showed that one-dimensional sinusoidal wavetrains are unstable to two-dimensional 
perturbations. Su et al. (1981) presented experimental data which showed the 
enhancement of instabilities with decreasing water depths. Bryant (1982) calculated 
Fourier coefficients numerically to examine short-crested waves ; Le Mehaute (1986) 
examined their maximum wave heights. Bridges (1987a, 6) used bifurcation theory 
to find two-dimensional cnoidal standing-waves. Segur & Finkel (1985) presented a 
two-dimensional generalization of cnoidal waves in shallow water based on a multi- 
parameter family of exact solutions of the equation of Kadomtsev & Petviashvili 
(1970, hereinafter referred to as KP). These solutions are also spatially periodic in 
two directions; however, the directions need not be orthogonal, so that both 
symmetric and asymmetric patterns are possible. Segur & Finkel conjectured that 
members of this family of periodic, nonlinear, two-dimensional waves represent 
‘typical ’ periodic waves in shallow water. Their work motivated this experimental 
study. 

The two major results of the present study are as follows. Experiments 
demonstrate the existence of a family of genuinely two-dimensional, shallow-water 
waves that are fully periodic in two spatial directions and time; their surface 
patterns are hexagonal. These waves are easy to generate and are extremely robust, 
maintaining their form up to breaking amplitudes. They propagate with practically 
no change in form for distances up to  25 wavelengths (the basin length), even though 
depth variations in the basin are as large as the wave amplitudes. Secondly, the KP 
model of these waves is remarkably accurate. This accuracy persists even for 
experimental waves well outside the putative range of validity of the K P  equation. 

An outline of the paper is as follows. The KP equation is discussed briefly in 52 
along with its two-dimensional periodic solutions. An algorithm is presented for 
choosing parameter values of these solutions so that they ‘best ’ represent the 
measured waves. An error measure is then introduced to quantify how accurately the 
KP solutions describe the measured waves. Experimental facilities and procedures 
for generating two-dimensional waves are described in 5 3. Detailed experimental 
results are presented in 34, along with comparisons of these results with KP theory 
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FIGURE 1.  Definition sketch of the fluid domain. 

and another theoretical model based on the linear superposition of cnoidal waves. 
Conclusions are summarized in $5. 

2. Summary of KP theory 

equation of the form 

Thorough discussions of the K P  equation and its relation to waves in shallow water 
have been presented elsewhere (e.g. Segur & Finkel 1985), so we merely summarize 
the main results here. The K P  equation describes the slow evolution of gravity- 
induced waves on water of uniform depth when the waves are assumed to be (i) long, 
(ii) weakly two-dimensional (with the x-direction dominant), and (iii) moderate in 
amplitude ; all three effects are supposed comparable in magnitude. In terms of the 
dimensional quantities shown in figure 1, these three assumptions formally require 

The equation of Kadomtsev & Petviashvili (1970) is a nonlinear differential 

11) (ft + 6 f l Z  +fZ,,), + 3fvv = 0. 

(KD)2 < 1, ( L / l q 2  -4 1,  (Fmax/D) -4 1,  (2) 

where (K,  L )  are typical wavenumbers in the ( X ,  Y) directions, Fm,, is a vertical scale 
of the surface deformation from its reference position and D is the reference water 
depth, defined so that periodic waves have zero mean-amplitude. The scaled 
variables in (1) are related to dimensional quantities according to 

x = d c ( X -  (gD)iT)/D, y = eY/D,  (3a,  b )  

t = (e3qD)@/(6D), f = 3EF/(2D) +O(c2), (3c, 4 
where g is the gravitational force per unit mass. (Surface tension could also be 
included in this description but is omitted here.) The three assumptions of (2) that 
underlie the K P  equation are inherent in the limit E + 0. Herein, we set E = 1 in order 
to compare with definite experiments, with the effect that a free parameter of the 
solution (termed k later) is required to be small for formal validity of the model. 

The K P  equation is a natural generalization of the famous equation of Korteweg 

(4) 
& de Vries (1895) 

ft + 68, +fzm = 0, 
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from one spatial dimension to two. It inherits many of the remarkable properties of 
the KdV equation, including the existence of an infinite hierarchy of periodic and 
quasi-periodic solutions with the form 

f(x, y, t) = 23: In O N ,  (5 )  

where 0, is a Riemann theta function of genus N .  These solutions were discovered 
by Krichever (1977), and were made computational for low genera by Dubrovin 
(1982) and Segur & Finkel (1985). For the genus-2 solutions of interest herein, 0, is 
given by a double Fourier series, 

W W 

@,(#J~, q5, ; B)  = Z Z exp [$(m: b + 2m1 m2 bh + mi(bh2 + d ) )  + i(m, q51 +m, #,)I, 
m,=-m m2=-m 

(6) 

$ j  = k,x+2jy+w,t+q5jo ( j  = 1,2). ( 7 )  

where the phases q5, and q5, are given by 

$lo and q520 are phase constants, and the real-valued parameters ( b , h , d )  define the 
elements of a Riemann matrix B according to 

B = [ b  bh ] 
bh bh2+d ’ 

provided b and d are negative. These solutions contain eleven parameters including 
two q520) that represent translational symmetry and nine ( 6 ,  h , d ,  k,,  k,, l,, l,, w l ,  
w,)  that we refer to as dynamical. Of the nine dynamical parameters, six are free since 
the KP equation provides three algebraic constraints among the nine. 

Segur & Finkel (1985) presented an algorithm to choose the six dynamical 
parameters so as to obtain real-valued, bounded KP solutions of genus 2 that are 
genuinely two-dimensional. In  these first experiments we limit our attention to a 
three-parameter subset of genus-2 solutions that are invariant under the trans- 
formation y+ -y; we call waves in this subset symmetric. I n  order to obtain a 
symmetric solution, first choose the parameters (b ,  A, d )  so that 

--CO < b < 0 ,  0 < h < 1 ,  d = b ( 1 - A ’ ) .  (9a ,  b ,  c )  

Condition (9b)  differs from the normalization of h given by Segur & Finkel (1985) : 
either is legitimate, and (9b)  is convenient for comparison with our experiments. 
Symmetry is imposed by taking (9c)  and by requiring 

k , = k , ( = : k ) ,  Z l = - Z , ( = : Z ) .  (10a, b )  

The last parameter to choose is k, which fixes the scaling symmetry in (1) and the x- 
wavelength of the entire pattern; without loss of generality, k > 0. Then one shows 
from the algebraic constraints that 

w1 = w2( = : w ) ,  (104 
so that the solution is truly symmetric. The remaining two algebraic constraints 
define (2/k2),  and ( w / k 3 ) .  Numerical results indicate that these quantities are always 
real for symmetric solutions, and that I + 0 so the solution is genuinely two- 
dimensional. Finally, choosing gz0) fixes the origin of the coordinate system and 
completes the specification of the solution. 

Every KP solution of genus 2 obtained in the manner outlined above is bounded, 
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FIGURE 2.  Symmetric K P  solution of genus 2 : b = - 6.20, h = 0.55, i;” = 0.90 
(corresponds to experiment KP1007). 

real-valued, symmetric, and genuinely two-dimensional. The x- and y-axes are 
directions of periodicity, and the entire spatial pattern is obtained by a periodic tiling 
of rectangles with dimensions (27r/k x 27rll). The pattern is stationary in a coordinate 
system moving in the x-direction with speed (wlk) ,  corresponding to  a dimensional 
speed of (gD)i( 1 + w / 6 k )  in laboratory coordinates. The K P  model of water waves 
attains formal asymptotic validity in the limit k+O,  with (l/k2)2 and (w/k3) finite. 
However, we will demonstrate reasonable agreement between theory and experiment 
even when k is not very small. 

Figure 2 shows a symmetric genus-2 solution for one choice of parameters ; two 
spatial periods in each direction are shown. The dominant feature of the wavefield is 
the array of large-amplitude crests that are normal to the x-axis. These large crests 
are connected by saddle-like regions of smaller amplitudes to form a hexagonal 
surface pattern. It is evident that the wavefield is two-dimensional, but also that it 
contains large regions in which the waves are effectively one-dimensional. In  these 
one-dimensional regions the waves can be approximated by a KdV cnoidal wavetrain, 
but obviously no such one-dimensional approximation could be uniformly valid in 
space. An appealing feature of genus-2 solutions of the KP equation is that one- 
dimensional regions fit naturally into obviously two-dimensional wave patterns. 

Figure 3 shows another symmetric KP solution of genus 2 for a different choice of 
free parameters. This particular solution lacks the large one-dimensional regions 
evident in figure 2, but the persistent hexagonal pattern shows the qualitative 
similarity of the two solutions. The dominant wave crests are still those normal to 
the x-axis; crests in the saddle regions are barely discernible. In  fact, every 
symmetric KP solution of genus 2 is qualitatively similar to those in figures 2 and 3. 
Different solutions correspond simply to different lengthscales in the x, y and f 
(vertical) directions. One specifies these lengthscales by the choice of k,  h and b ,  more 
or less respectively. This correspondence forms the basis for choosing genus-2 
solutions to represent measured wave data, as we discuss next. 

In order to test K P  solutions of genus 2 as a model of experimental water waves, 

I9 FLM 209 
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FIGURE 3. Symmetric KP solution of genus 2 : b = -5.55, h = 0.25, ,u = 0.80 
(corresponds to experiment KP3007). 

it  is necessary to choose the five free parameters (b,  A, k, #,,) of a solution that 
best represents the measured wavefield. In  the experiments described below, 
approximate measurements of the x- and y-wavelengths and more accurate 
measurement of the t-period and the maximum wave amplitude were available. 
These data led to the following optimization scheme for fitting genus-2 solutions. 
First, estimates of k and 1 are obtained from the measured x- and y-wavelengths. For 
any A,  b can be chosen in order to make the maximum amplitude of the computed 
and measured waves agree. The value of k: is then varied in order to match the 
computed and measured wave periods. Finally, h is varied until the computed and 
measured y-wavelengths agree. The scheme is repeated if the variation of one 
parameter creates too large a discrepancy in an earlier match; the allowable range 
for each parameter depends on the accuracy of experimental measurement. (Based 
on the experiments described in $3,  we require agreement to within 5% for fmax, 3% 
for t-periods, and 10 % for y-wavelengths, when that length is completely resolved by 
the overhead photographs.) Once (6, A,  k) are chosen in this manner, the phases 
#20) are chosen to optimize the agreement between computed and measured wave 
patterns. 

The above surface-fitting algorithm converged rapidly, both for inferring (b ,  A, k) 
from a calculated KP solution and for fitting experimental waves, which have no 
‘correct’ values of b, A and k. It is important to recognize that only three 
measurements are needed to determine (b ,  A,  k), from which the entire wavefield can 
be reconstructed, up to translation. Once these parameters are chosen using three 
measurements, any other measurement of the wavefield is predicted by the theory. 

In order to quantify the accuracy of the chosen K P  solutions in describing the 
measured waves, i t  is useful to choose some definite measure of goodness-of-fit. 
Moreover, an error measure will allow us to rank order the experiments and provide 
insight into the experimental parameter ranges for which KP theory is valid. A 
traditional measure of error is the r.m.s. (root-mean-square) of the differences 
between data and theory. Given a symmetric, periodic surface wave with zero mean 
in shallow water, let fs,,, represent measured values of the wave amplitude in an array 
of points (xi, yj) in the spatially periodic rectangle. Let f,,, denote the values given by 
the corresponding symmetric, periodic KP solution of genus 2 a t  the same points. (It 
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follows from (5) that  the solution has zero mean as well.) Then a normalized r.m.s. 
error cr between f i , j  and f , j  may be defined as 

According to  ( l l ) ,  a value cr = 0 corresponds to  no error while cr = 1 is equivalent 
to using no theory at all, i.e. fi,j = 0. (Of course, a non-zero theory could also give 
cr = 1.) Note that cr is an unbounded error measure; hence, it is misleading to  think 
of cr in terms of percentage error. It is worth emphasizing that the surface-fitting 
algorithm described above does not involve the error measure so that no explicit 
attempt is made to minimize cr (see Appendix A). 

3. Experimental facilities and procedures 
Experiments were conducted at  the Coastal Engineering Research Center (CERC), 

US Army Engineer Waterways Experiment Station, in Vicksburg, Mississippi. The 
facilities used for these experiments include (i) a wave basin, (ii) a directional wave 
generator, (iii) wave gauges, (iv) a camera system, and (v) a computer system for 
control of the wavemaker and data acquisition. Both the basin and wave generator 
were new, and the time available for their use was limited. The newness of the 
equipment masked some limitations that did not become apparent until experiments 
were well underway. Also, the newness (at least to the authors) of measuring two- 
dimensional wave patterns did not allow us to preplan the experiments in an optimal 
way. Even so, the reported data have the refinement and resolution necessary to test 
both the existence of two-dimensional, steady, spatially periodic waves and the 
accuracy of KP theory in predicting their form. The experiments also provide 
qualitative information on the stability of the waves. Both the equipment and 
procedures are described in more detail by Scheffner (1988). 

3.1. Overview of facilities 
Figure 4 shows a schematic drawing of the laboratory facilities. The enclosed wave 
basin was 30 m wide and 56 m long with a poured-slab concrete floor and concrete 
block sidewalls. A water depth of D = 30 em was used in all experiments. The 
concrete floor of the basin was not flat; bathymetry measurements yielded depth 
variations up to 3 cm. A rectangular grid of points was marked on the basin floor 
to serve as benchmarks for placement of wave gauges and for reduction of 
photographic data. A 4 m width of rubberized horsehair was placed along the 30 m 
endwall opposite the wavemaker in order to  absorb wave energy. No absorption 
material was used along the basin's 56 m sidewalls. 

The directional wave generator was located along one of the 30 m endwalls of the 
basin. This segmented wavemaker consisted of 60 vertical piston-type paddles, each 
with a width W = 45 em, which penetrated the entire water column. (The wavemaker 
spanned the central 27 m of the 30 m endwall.) The paddles were not sealed against 
leakage a t  the basin floor ; however, flexible membranes between adjacent paddles 
inhibited flow there and acted to smooth the face of the wavemaker. Horizontal 
act'uators were located at the joints between paddles so that the wavemaker motion 
was determined by 61 push-pull points. The motion for each of the 61 actuators was 
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FIGURE 4. Schematic drawing of the wave basin. 

programmable and servo-controlled with position feedback. The maximum dis- 
placement of an actuator was 30 cm. Command signals corresponding to the desired 
time-displacement histories for each of the actuators were provided by a dedicated 
DEC VAX-750 computer system that was also used to collect and analyse data. 

Two types of measurements were made during the experiments. First, parallel 
wire, resistance-type gauges measured the vertical deformation F ( X ,  Y ,  T) of the 
water surface from its quiescent position a t  nine fixed locations, which were spaced 
75 cm apart and were aligned in a linear array parallel to and 12.2 m from the 
wavemaker, as shown in figure 4. The gauge array was placed astride the basin’s 
centreline (X-axis). The 6 m  length of the gauge array was sufficient in all 
experiments to  span a t  least half a Y-wavelength for the generated wave patterns. 
The analog signals from these gauges were digitized (without prior filtering) a t  a rate 
of 50 Hz by the computer system. All of the gauges were statically calibrated prior 
to each experiment under control of the computer system. Gauge calibrations were 
linear over the full 15 cm of wave height they could measure. 

Secondly, photographs of the surface wave patterns in the vicinity of the gauges 
were made using two Hasselblad 500 EL/M 70 mm cameras. These cameras were 
placed 6 m apart, astride the basin centrelinc, and 7 m above the gauge array ; their 
focal planes were parallel to the quiescent water surface. (The wave gauges were 
removed during photography.) The building was first darkened and then illuminated 
for photography by two 8000 W-s strobe lights located just  above the wavemaker 
and pointing horizontally in the X-direction. Hence, the photographs show wave 
crests as regions of strong gradients in grey level with the front face of a wave darkest 
(e.g. see figure 7). The fields of view of the two cameras overlapped so that a mosaic 
of simultaneous photographs provide a picture of the wave pattern in an area with 
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FIGURE 5. Wave profiles a t  each of the nine gauges for the underlying cnoidal (genus-1) 
wavetrain used in the experiments of series KPxx07. 

a size of approximately 7.0 x 12.2 m. This area was sufficient in all but three 
experiments (KPlOxx) to  capture one spatial wavelength in the Y-direction. The 
known geometry of the camera system and the photographic printing procedures 
enabled horizontal distances in the wave pattern to be measured from photographs 
with an accuracy of about 10 %. In addition to these semi-quantitative photographs, 
a video tape of one series of experiments was made, showing the evolution of the 
entire wave pattern. (This video tape is available by contacting N. Scheffner a t  the 
address given above.) 

3.2. Generation of genus-1 waves 
The clean generation of freely propagating waves in the laboratory requires the 
wavemaker to impart a velocity field to the water column which is similar to that 
occurring naturally. Since the vertical distribution of velocity is relatively uniform 
for long waves, piston-type wavemakers, which penetrate the water depth and move 
horizontally, are generally used. Excellent results for generating gcnus- 1 (cnoidal) 
waves have been presented by Goring & Raichlen (1980) who used a single piston in 
a narrow channel. In  their procedure, the programmed motion of the piston fully 
accounted for the finite displacement of the wavemaker. In order to calibrate the 
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FIGURE 6. One-dimensional slices through the surface pattern of the underlying cnoidal wavetrain 
used in the experiments of series KPxx07 : -, theoretical, based on average measured wave 
properties ; ***, experimental. 

laboratory facility, the procedure of Goring & Raichlen was implemented using the 
segmented wavemaker. (It also turned out that these genus-1 waves were essential 
in the clean generation of genus-2 waves, as will be discussed in $3.3.) Figure 5 shows 
the time series F(X,,  Yn, T ) ,  with X ,  = 12.2 m and n = 1 , .  . . , 9  corresponding to each 
of the wave gauges, when a (one-dimensional) cnoidal wavetrain was generated and 
directed along the X-axis. The stroke amplitude of the paddle was S = 5 cm and the 
wavemaker period was 7 = 1.38 s. (The wavelength, A ,  in the direction of propagation 
and the elliptic modulus, M ,  are listed in table 1 under experiments KPxx07.) 
Ideally, wave amplitude and phase should be identical a t  each gauge site in figure 5 
and the amplitudes should be steady. Weak unsteadiness is apparent a t  each gauge 
site. Discrepancies in amplitudes among gauge sites are also obvious ; variations up 
to 26% in negative amplitudes and 33% in positive amplitudes are evident. 
Variations in wave phases between gauge sites also exist. We attribute both 
discrepancies primarily to the spatial non-uniformities in water depth between the 
wavemaker and the gauge array. However, it should be emphasized that the stability 
of cnoidal waves to two-dimensional perturbations has not been established 
theoretically, or experimentally in wide basins. Hence, some of the variations among 
gauge sites in figure 5 may be a consequence of instabilities. (As noted in $1, 
sinusoidal waves in shallow water are unstable to two-dimensional perturbation.) 

In order to quantify the differences among wave gauge records in figure 5 ,  the 
measured results during a single wave period are compared with those ofa  theoretical 
genus-1 wave in figure 6. The theoretical wave is based on the average values of the 
crest-to-trough height ( H ) ,  period, and starting phase of the measured waves. The 
wave beginning near T = 15 s was chosen from each of the nine gauge records of 
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Experiment 

KP1007 
K P  1507 
KP2007 
KP3007 
KP4007 
KPlOl1 
KP1511 
KP2011 
KP30 1 1 
KP1015 
KP1515 
KP2015 

Wavemaker 
period? 

7 ( s )  

1.38 
1.38 
1.38 
1.38 
1.38 
1.95 
1.95 
1.95 
1.95 
2.55 
2.55 
2.55 

Paddle 
phase shift1 

10 
15 
20 
30 
40 
10 
15 
20 
30 
10 
15 
20 

a ("1 

Directed 
wave angle 

7.4 
11.0 
14.5 
21.3 
27.4 
11.5 
17.0 
22.2 
31.4 
15.5 
22.6 
29.1 

P (") 

Directed 
wavelength1 

7 
7 
7 
7 
7 

11 
11 
11 
11 
15 
15 
15 

'4 (f) 

Elliptic 
modulus 

M 

0.66 
0.66 
0.66 
0.66 
0.66 
0.90 
0.90 
0.90 
0.90 
0.97 
0.97 
0.97 

TABLE 1 .  Generation parameters for the underlying cnoidal waves in each experiment: 
S = 5 em, L) = 30 em 

7 The measured wave periods of cnoidal wavetrains are equal t o  those of the command signals. 
1 Kote tha t  the identification label for each experiment gives the angle a in the first two digits 

followed by the wavelength in feet in the last two digits. 

figure 5 for analysis; similar results are obtained for other waves in the record. Based 
on the r.m.8. error defined in (ll),  we find CT = 0.24 between the measured and 
theoretical waves of figure 6. One can interpret this value as typical of the 
experimental error inherent in our laboratory facility. 

3.3. Generation of genus-2 wave8 

It was found experimentally that genus-2 waves could be generated best by letting 
them evolve from two, obliquely interacting, genus- 1 wavetrains input a t  the 
wavemaker. Direct generation was also tried; each of the 61 actuators was 
programmed using KP theory suitably modified to account for the finite 
displacement of each actuator. This method produced very unsatisfactory results. 
The wavefields were unsteady and differed in their qualitative features from 
expected genus-2 behaviour. The difficulty with direct generation appeared to result 
from the narrowness of the saddle regions and the steep wave angles there required 
by KP theory. The paddle widths (W = 45.75 cm) were simply too large to resolve 
waves in the saddle regions. 

The final procedure adopted for generation of genus-2 waves was as follows. First, 
the wavemaker was programmed to generate a single cnoidal wavetrain using the 
procedure of Goring & Raichlen (1980) ; the stroke amplitude S and period T of the 
paddle were prescribed and the wave was directed along the X-axis. This wavetrain 
was measured, and then the periodic command signals to adjacent actuators were 
phase lagged by an angle a in order to generate the same wavetrain directed at  an 
angle (+/I) to the X-axis. (The relation between a and /3 is given by /3 = arctan 
(aA/360W), in which all angles are in degrees. The angle /3 of the cnoidal wavetrains 
is related to the parameters of the genus-2 solutions by /3 = arctan (Z/k) . )  Command 
signals for the same wavetrain a t  an angle (-/I) to the X-axis were then constructed, 
and the two signals were superposed to produce a final command signal. It is noted 
that this method of wave generation also provides a direct test of a genus-2 waves 
as a model for the oblique interaction of two identical cnoidal wavetrains in shallow 
water. 
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Twelve experiments were performed for three different wavemaker periods 7 and 
a wide range of angles p ;  the paddle stroke for each of the underlying cnoidal 
wavetrains was S = 5 cm in all experiments. Generation parameters S ,  7 and CL are 
summarized in table 1, which also shows the directed angle /I, the directed 
wavelength A ,  and the elliptic modulus M for the underlying cnoidal waves of each 
experiment. The chosen stroke was the maximum allowable in order to avoid wave 
breaking in any of the twelve experiments. (The experiments with the shortest 
underlying genus- 1 waves, i.e. KPxx07, were nearest breaking.) Large wave heights 
were used in order to make the photographic data more definitive. Consequently, 
these waves were not necessarily small, contrary to one of the theoretical 
assumptions discussed in $2. Only a portion of the data from the twelve 
experiments is presented here. A complete set of data can be found in Scheffner 
(1988). 

Since the two-dimensional experimental waves evolved from obliquely interacting 
genus-1 waves, we cannot expect better results with the genus-2 solutions than 
obtained for the single cnoidal wavetrain of figures 5 and 6. Although the depth 
variations in the wave basin were a major perturbation to the generated wave fields, 
there were other perturbations as well. Clearly the method used to generate genus- 
2 waves introduced extraneous waves since the velocity distribution along the 
wavemaker was not that required by KP theory. It has already been noted that the 
basin sidewalls were 1.5 m from the ends of the wavemaker. Hence, diffraction effects 
occurred a t  the ends of the finite-width wavetrains, even when they were directed 
along the basin axis. These effects were exaggerated further when wavetrains were 
directed at  angles to the X-axis. Diffraction followed by reflection (and reflection 
followed by diffraction) a t  the sidewalls contaminated the wavefield and led to 
further unsteadiness in the measurements. All of these latter effects increase for large 
angles /I so that one expects a corresponding decrease in the accuracy of any steady- 
state theory for experiments with large angles. 

4. Presentation and discussion of results 
Experimental data are first presented to demonstrate the existence and nature of 

the symmetric periodic wave patterns that evolve from two obliquely interacting 
cnoidal wavetrains. Once the qualitative similarities between the experimental 
waves and exact KP solutions of genus 2 shown in 92 are established, a quantitative 
comparison of KP theory and wave gauge data is presented. 

4.1. T w o - d i ~ e n ~ i o n a l  periodic experimental waves 

I n  order to  demonstrate the existence of fully periodic waves, mosaics of two 
overhead photographs for each of three experiments are presented in figure 7 .  Recall 
from $3 that the strobe lighting for each photograph was located a t  the wavemaker 
and pointed in the positive X-direction. Hence, front faces of wave crests appear dark 
while the rear faces appear light. 

The similarities of the hexagonal wave patterns in figure 7 with those of the 
theoretical genus-2 waves in figures 2 and 3 are obvious. (In fact, the computed 
waves of figures 2 and 3 represent the best-fit solutions for the experimental waves 
in figure 7 (a ,  c ) ,  respectively.) The wave pattern in experiment KP1007 of figure 7 (a )  
is dominated by nearly one-dimensional wave crests that propagate in the direction 
of the pattern (along the X-axis). Similar wave crests are also the most pronounced 
feature of the wave patterns in experiments KP2007 and KP3007 of figure 7 ( 6 ,  c) ,  
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respectively. However, the lengths of these crests decrease dramat>ically as the angle 
of the underlying genus-1 waves increases from p = 7.4" in figure 7 (a) to p = 21.3" 
in figure 7 ( c ) .  Based on the method of generating the wave patterns in figure 7, the 
dominant wave crests may be interpreted as resulting from the nonlinear interaction 
between crests of the underlying genus-1 waves. This is the periodic analogy of the 
Mach stem found by Miles (1977a) for obliquely interacting solitary waves. 
Henceforth, we refer to these dominant crests as interaction regions. As in the genus- 
2 solutions of figures 2 and 3, the interaction regions in figure 7 are connected 
spatially by saddle regions to form hexagonal surface patterns. These saddle regions 
may be interpreted qualitatively as remnants of the two cnoidal waves input by the 
wavemaker. Even though the input cnoidal waves make angles with the X-axis 
ranging from 7.4" to 21.3" in figure 7, crests in the saddle regions remain a t  an angle 
of approximately 45" in each experiment. Since the X-wavelength of the hexagonal 
pattern increases only slightly as the input angle p increases, the width in the Y- 
direction of the saddles remains small, about 1.5 m in figure 7. (As noted in $3.2, this 
behaviour was the main reason that direct generation of genus-2 waves by the 
segmented wavemaker was unsatisfactory.) Clearly, the wave patterns of figure 7 are 
genuinely two-dimensional and qualitatively similar to the genus-:! waves described 
in $2. 

Two other aspects of the wavefields in figure 7 should be noted. First, the sharp 
contrast in grey level (light to dark) occurring across portions of the wave crests in 
the interaction region indicates that the crests are very peaked there. I n  fact, there 
was other experimental evidence that all of these crests in experiments KPxxO7 were 
very near their breaking height. For example, a 10% increase in stroke amplitude 
caused the waves of KP1007 to break. Second, wave crests in the interaction regions 
of figure 7 exhibit some spatial snaking along their crests : this is especially obvious 
in experiment KP1007 of figure 7(a) .  This behaviour probably results from the 
varying water depth between the wavemaker and photograph site, which gives rise 
to different arrival times for a phase position along a crest. (Recall that this effect 
was observed for the genus-1 waves shown in figure 6.) The snaking of wave crests 
in figure 7 was manifest temporally as a to-and-fro wobbling of crests during 
propagation. (The latter effect is clearly visible in the video of the experiments.) 

Figure 8 shows a portion of the wave gauge data obtained during experiment 
KP3007. Wave profiles are presented for each of the nine gauges whose spatial 
locations are shown in figure 7(c).  Note that the 6 m array of gauges spans slightly 
more than one Y-wavelength. Gauges 1 and 2 are located in interaction regions with 
gauge 2 nearer the saddle. Crest-to-trough wave heights H decrease slightly between 
gauges 1 and 2, and then decrease dramatically at gauge 3, which is located near the 
centre of a saddle region. According to KP theory, gauges in saddle regions should 
measure two identical crests per wave period. Gauge 3 shows that two crests are 
present in each wave period; however, their amplitudes are not identical. As we 
continue traversing the gauge array, moving from interaction region to saddle and 
back, increases and decreases in wave heights occur. All of the wave gauges exhibit 
some unsteadiness in amplitude. I n  the saddle data of gauges 3 and 7, this 
unsteadiness is also manifest by the gradual emergence of the second crest expected 
there. Finally, we note that the ratio of maximum wave height to water depth occurs 
at gauge 8, and has a value H I D  x 0.42. This value is considerably less than the 
accepted breaking criterion for one-dimensional waves (e.g. H I D  x 0.8, see Sarpkaya 
& Isaacson 1981) ; however, as already noted, other experiments indicate that all of 
the waves of figure 7(c) are very near their limiting heights. 
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FIGURE 7. ( a )  and ( b ) .  For description see opposite. 
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FIGURE 7. Mosaics of two overhead photographs showing water surface patterns. Wave gauge 
positions are also indicated. (a) Experiment KP1007 ; (b) experiment KP2007 ; (c) exper&e& 
KP3007. 

4.2. Comparison of experimental waves with KP theory 
In order to test the applicability of K P  solutions of genus 2 to model fully periodic 
water waves, it is necessary to choose the three dynamical parameters (b ,  A ,  k) and two 
nondynamical parameters q520) which yield a best-fit KP solution for a particular 
experiment. (Recall that b, A and k correspond to lengthscales of the solution in the 
vertical, Y-,  and X-directions, more or less respectively.) Such a surface-fitting 
algorithm based on the photographic and wave gauge data available in this study 
was outlined in $2. Results of the algorithm are presented for all twelve experiments 
in table 2 which shows the KP parameters of the best-fit solutions and the 
corresponding error CT between the KP model and the measured waves. It should also 
be noted that the photographs in experiments KPlOxx did not capture a full 
Y-wavelength ; hence, these data were supplemented by direct observation of 
the waves. 

Quantitative comparisons between measured and theoretical wave profiles at each 
of the nine gauge sites are presented in figure 9 for three of the twelve experiments. 
These experiments are representative of the twelve conducted in the sense that one 
from each series of experiments is shown and that they span a wide range in error 
measure (see table 2) from CT = 0.27 in KY1515 to CT = 0.51 in KP1011. The wave 
profiles flf,,, are shown for simultaneous measurements during one wave period ; 
this wave period is typical of the entire wave record. (Results for this wave period 
were compared to those for other periods in the record and to those for an average 
period constructed from a five-wave interval of the record. Details of these 
comparisons are presented by Scheffner 1988.) 
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FIGURE 8. Wave profiles for each of the nine gauges in experiment KP3007. 

Experiment 

KP1007 
KP1507 
KP2007 
KP3007 
KP4007 
KPlOll 
KP1511 
KP2011 
KP3011 
KP1015 
KP1515 
KP2015 

Theoretical 

- b  h 

6.20 0.55 
5.50 0.50 
5.73 0.40 
5.55 0.25 
5.15 0.16 
4.95 0.40 
4.60 0.35 
4.40 0.23 
4.45 0.12 
3.85 0.34 
3.60 0.15 
3.40 0.11 

~ 

k 

0.900 
0.867 
0.843 
0.800 
0.720 
0.585 
0.565 
0.540 
0.500 
0.420 
0.390 
0.367 

U 

0.37 
0.59 
0.49 
0.40 
0.47 
0.51 
0.34 
0.39 
0.46 
0.42 
0.27 
0.35 

Me as u r e d 

lc2 

0.810 
0.752 
0.711 
0.640 
0.518 
0.342 
0.319 
0.292 
0.250 
0.176 
0.152 
0.135 

(l/kY fm,, 

0.022 0.31 
0.045 0.45 
0.076 0.38 
0.213 0.41 
0.488 0.41 
0.050 0.28 
0.085 0.36 
0.200 0.39 
0.395 0.31 
0.071 0.33 
0.252 0.36 
0.401 0.36 

TABLE 2. Dynamical parameters for KP solutions of genus 2 in each experiment, normalized r.m.s. 
error CT between KP solutions and measured waves, and the measured values of the three 
parameters required to  be small for the formal validity of the KP model 
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FIGURE 9. One-dimensional slices through the two-dimensional surface patterns showing --, 
theoretical and ***, experimental wave profiles a t  the nine gauges. (a )  Experiment KP1.515; ( b )  
experiment KP1007; ( c )  experiment KP1011. 
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The best agreement between theoretical and measured data occurred in experiment 
KP1515, which is shown in figure 9(a ) .  This excellent agreement resulted in a 
normalized r.m.s. error u = 0.27, which is nearly equivalent to that obtained for 
genus-1 waves when the basin was calibrated (see $3.2 and figure 6). The fairly large 
value of u for the excellent agreement shown in figure 9 ( a )  is a consequence of our 
normalization ; recall that this error measure should not be considered in terms of 
percentage error. The slight discrepancies in wave amplitudes, asymmetries of the 
measured waves, and nodal arrival times are consistent with those observed for the 
cnoidal waves in figure 6. Note that adjustment of five parameters in the genus-2 
solution of figure 9 (a) is sufficient to obtain good agreement with the measured waves 
a t  all nine gauge sites. 

Experiment KP1007 of figure 9 ( h )  shows differences in nodal arrival times between 
the measured and theoretical waves a t  nearly all gauge sites. There are also 
significant differences between measured and predicted wave amplitudes, especially 
in the saddle region. These errors are reflected in the higher r.m.s. error u = 0.37; 
they are typical of experiments in the middle of our measured error range. (A 
perspective view of the theoretical solution for this experiment is given in figure 2 
while an overhead photograph of the experimental waves is presented in figure 7 c . )  
Note that gauge 3 is located a t  a theoretical node of the wavefield which is nearly an 
experimental node as well. 

Experiment KPlOll of figure 9(c) is typical of those showing poorest agreement 
between genus-2 solutions and measured waves. The major contributions to the 
higher r.m.s. error arise in saddle region where theoretical and experimental waves 
are almost 180" out of phase and differences between predicted and measured wave 
amplitudes are significant. Regardless of these discrepancies, the qualitative 
agreement of K P  theory over the full range of data shown in figure 9 is striking. 

4.3. Linear superposition of genus- 1 waves 

As already described in $3.2, the experimental waves presented in $4.2 result from 
the oblique interactions of two genus-1 waves input a t  the wavemaker. In order to 
examine the importance of nonlinear interactions in these experiments, another 
theoretical solution, based on the linear superposition of two cnoidal waves, was 
compared with the measured waves in the three experiments presented in figure 9. 
(Recall that these waves essentially span the error range of our twelve experiments.) 
The cnoidal wavetrains for each experiment were assumed to be directed at  angles 
+!I to the X-axis as listed in table 2, to have a period equal to that of the measured 
waves, and to have a maximum amplitude of half that of the measured waves. (The 
last assumption is consistent with forcing the KP solution to agree with the 
maximum measured amplitude in the surface-fitting algorithm.) 

In terms of u, the KP model always proved better than (or equivalent to) linear 
superposition of cnoidal waves for each of the experiments. (This was also true for 
each of the nine wave records within each experiment.) In  experiment KP1515, we 
found u = 0.44 using linear superposition compared to u = 0.26 for KP theory. In 
order to illustrate the differences between KP theory and linear superposition, 
perspective views of both theoretical solutions for the parameters of experiment 
KP1515 are shown in figure 10; the water surface is pictured for two spatial periods. 
The dominant feature of both solutions is the large-amplitude crest in the interaction 
region where the underlying waves overlap spatially. However, the wave crests in the 
K P  solution are longer and more uniform in amplitude than those resulting from 
linear superposition. More importantly, the longer interaction regions of the KP 
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FIGURE 10. Perspective views of computed wavefields for experiment KP1515. (a) Linear super- 
position of underlying cnoidal wavetrains; ( b )  KP solution of genus 2. 

solution are accompanied by phase shifts of the underlying (saddle) waves as they 
enter and exit an interaction region. These phase shifts are described by Segur & 
Finkel (1985) who showed that they become more pronounced in the soliton limit 
b + 0, in which an explicit formula relates them to the magnitude of the parameter A. 
They are a distinguishing feature of the KP model, with no counterpart in linear 
superposition. The existence of phase shifts in the measured waves is clear in the 
overhead phot,ographs of figure 7 ( b ,  c ) .  (Only one saddle region is visible in figure 
7 ( a )  ; hence, the phase shifts cannot be detected from this figure; however, they are 
visible in the video tape of that experiment.) 

The results for experiment KP1007 were a = 0.45 using linear superposition, 
compared to u = 0.37 using KP theory. The r.m.s. error for experiment KP1011 
using linear superposition was IT = 0.54, which was slightly greater than that (a = 
0.51) for K P  theory. Hence, K P  theory consistently predicted the measured waves 
in these experiments better than a model based on the linear superposition of cnoidal 
waves. Unfortunately, none of our experiments are near the soliton limit b + 0, in 
which phase shifts radically alter the KP solutions from those resulting from linear 
superposition. (Calculations by Segur & Finkel (1985) show that the features of the 
soliton limit appear for b 2 - 1.) The experiment nearest this limit (KP2015) has 
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b = -3.4, even though the underlying cnoidal waves there have an elliptic modulus 
M = 0.97. We conjecture that KP theory will prove significantly better than linear 
superposition for modelling water waves nearer the soliton limit. 

4.4. Parameter ranges of KP theory and stability of experimental waves 
As noted in $2, the KP equation becomes asymptotically valid in the limit of k + 0 
so that the conditions of (2) are satisfied. (Alternatively, the three parameters of (2) 
may be replaced by k2 ,  (1 /k)2  and fmax.) Actual numerical ranges over which these 
parameters can be considered small are usually established empirically. In  these first 
experiments with two-dimensional waves, we did not make an extensive effort to 
determine these parameter ranges ; however, acceptable ranges of validity for k2 and 
fmax for one-dimensional waves are well estblished in engineering practice (e.g. see 
Sarpkaya & Isaacson 1981, or the US Army CERC 1984). Weakly nonlinear theories 
are used up to breaking-wave heights, i.e. H x 0.80, while k2 < 0.06 is the accepted 
rangc for long-wave dispersion. Neglecting the up/down asymmetry of nonlinear 
waves in shallow water, the breaking height for one-dimensional long waves 
corresponds to a breaking amplitude off,,, % 0.6. 

The measured values of the three parameters involved in KP theory for each of our 
twelve experiments are summarized in table 2. The experimental measures of 
dispersion are in the range 0.135 < k2 < 0.810; hence, each experiment involves more 
dispersion than customarily accepted in engineering practice for the application of 
long-wave theories. While the good agreement between KP theory and the measured 
data in KP2015, in which k2 = 0.135, may not seem too surprising, the continued 
agreement till k2 = 0.810 in experiment KP1007 is noteworthy. The rank ordering of 
these experiments by r.m.9. error, u, shows no particular trend in terms of dispersion ; 
in fact, experiment KP1007 is one of the better comparisons. 

The maximum amplitudes of the experimental waves were all large, lying in the 
range 0.28 < f,,, < 0.45. Again, there does not appear to be a trend among the 
experiments between f,,, and CT. Indeed, experiment KP1011, which has the smallest 
amplitude among all the experiments, ranks eleventh among the twelve experiments. 
This behaviour contrasts markedly with the largest-amplitude experiment (KP1507), 
which compares worst according to 0-. As already noted, there was other experimental 
evidence that all of the waves in the experiments of series KPxx07 were nearly 
breaking, even though their relative heights, 0.34 < HID < 0.49, were substantially 
below that for breaking one-dimensional waves. Hence, the two-dimensionality of 
the wave pattern, which is measured by the parameter ( Z / ~ C ) ~ ,  may be important in 
establishing a breaking criterion for these two-dimensional waves, contrary to a 
prediction by Le Mehaute (1986). 

As sought in the original planning of these experiments, the two-dimensionality of 
the measured waves spans a wide range from (Z/k)2 = 0.022 in experiment KP1007 
to (Z/k)2 = 0.488 in KP4007, in which the crests of the underlying cnoidal waves 
formed an angle of 54.8". Even though the restriction of KP theory to  weakly two- 
dimensional waves (i.e. small angles) appears to be violated in many of these 
experiments, the genus-2 solutions do well. The ranking of experiments by u shows 
no particular trend with angles of the underlying waves. Hence, it does not appear 
that the accuracy of KP theory is particularly sensitive to angles (or two- 
dimensionality) over the wide range of values in these experiments. 

In  spite of excessive amounts (from the point of view of KP theory) of dispersion, 
amplitude, and two-dimensionality in many of these experiments, the waves 
retained their qualitative structure during propagation over the entire length of the 
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basin. (This distance corresponded to about 25 wavelengths for the KPxx07 
experiments and about 12 wavelengths for the KPxxl5 experiments.) All of the 
waves propagated in a basin where the variations in quiescent water depth were as 
large as the amplitudes of the generated waves. In  other experiments, in which 
simultaneous breaking of waves occurred in the interaction regions, the waves 
reformed and continued propagation. This observed behaviour provides qualitative 
evidence of the stability of these two-dimensional waves. In  contrast, Benney & 
R,oskes (1969) showed that one-dimensional (sinusoidal) waves in shallow water were 
unstable to  two-dimensional perturbations, except for a special case of neutral 
stability a t  k = 0.38. Su et al. (1981) provided experimental evidence of shallow- 
water instabilities for one-dimensional waves. Since genus-2 solutions can contain 
large regions where the waves are essentially one-dimensional (see figure 2), it is not 
clear whether the one-dimensional regions will remain stable over long distances of 
propagation. However, it should be noted that the one-dimensional regions of genus- 
2 waves approximate cnoidal, rather than sinusoidal, waves ; the higher harmonics 
present in cnoidal waves might provide a stabilizing influence. 

5. Summary and conclusions 
Twelve experiments were presented in which two oblique cnoidal wavetrains were 

generated mechanically in a wave basin of (nearly) uniform depth ; both wavetrains 
had the same amplitude and period. These interacting wavetrains produced a 
wavefield which propagated with practically no change in form; the surface pattern 
of this wavefield was genuinely two-dimensional and fully periodic, i.e. periodic in 
two spatial directions and time. The wave patterns were hexagonal in shape, and 
symmetric about the direction of propagation, which coincided with the bisectrix of 
the angle formed by the crests of the underlying cnoidal waves input at  the 
wavemaker. These hexagonal wavefields were observed to be stable, retaining their 
form even up to breaking amplitudes and propagating for distance up to 25 
wavelengths in a basin whose depth variations were as large as the wave amplitudes. 
(These two-dimensional waves were also observed to break a t  heights substantially 
smaller than those observed for one-dimensional waves in shallow water.) In most 
experiments the hexagonal wave patterns were dominated by wave crests normal to 
the direction of pattern propagation, which we termed interaction regions. These 
crests were connected by saddle-like waves to complete the hexagonal pattern. 
Quantitative measurements of the wavefields were obtained from overhead 
photographs of the surface wave patterns and a linear array of nine wave gauges, 
aligned perpendicular to the direction of pattern propagation. 

The experimental waves were found to be described with reasonable accuracy by 
a subset of a family of exact solutions of the Kadomtsev-Petviashvili equation 
known as KP solutions of genus 2. A member of this symmetric subset of genus-2 
solutions is completely specified by the choice of five parameters. An algorithm was 
presented for using the measured data to choose these five parameters in order to 
obtain a genus-2 solution for each of the twelve experiments. The accuracy of these 
KP solutions in representing the form of the measured waves was then calculated in 
terms of a normalized r.m.s. error u, which was in the range 0.27 < u < 0.59 (perfect 
agreement between theory and experiments would yield u = 0; no theory at all 
would yield u = 1. A calibration of the experimental facility using a single cnoidal 
wavetrain indicated that a value of u = 0.24 was the best that could be expected 
owing to the depth variations in the wave basin). The accuracy of KP theory 
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persisted even though many of the experiments were outside the putative range of 
validity of the K P  equation. In  particular, both the weakly nonlinear and weakly 
two-dimensional assumptions underlying the K P  equation were violated in some 
experiments. 
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Appendix A. Surface fitting and error measurement 
One referee raised serious objections to our algorithm for choosing K P  solutions 

that best-fit experimental data, since it did not incorporate the error measurement 
(T. It was suggested that we employ a standard regression analysis that would choose 
the K P  solution that minimized (T. Such an analysis would incorporate all of our 
data, rather than the single datum for the maximum amplitude, and undoubtedly, 
would lower the values of (T reported in table 2. While regression analysis has obvious 
merit, we prefer our algorithm for the following two reasons. First, our procedure 
provides a more severe test of KP theory, since it chooses the KP solution that 
minimizes one norm of error (the L,  norm, which is zero to within the accuracy of 
our measurements), and then computes error based on a different norm (the L,  norm, 
i.e. v). Second, the L,  norm is especially useful in engineering applications where it 
is often more sensible to choose a design wave whose maximum amplitude agrees 
with measurements. While regression analysis would minimize CT, the maximum 
amplitude of the theoretical and measured waves would no longer (necessarily) agree. 
Regardless of which error measure is minimized, figure 9 shows that K P  theory 
provides a reasonable description of the measured waves. 
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